Non-Conforming Localized Model Reduction with Online Enrichment: Towards Optimal Complexity in PDE constrained Optimization

نویسندگان

  • Mario Ohlberger
  • Felix Schindler
چکیده

We propose a new non-conforming localized model reduction paradigm for efficient solution of large scale or multiscale PDE constrained optimization problems. The new conceptual approach goes beyond the classical offline/online splitting of traditional projection based model order reduction approaches for the underlying state equation, such as the reduced basis method. Instead of first constructing a surrogate model that has globally good approximation quality with respect to the whole parameter range, we propose an iterative enrichment procedure that refines and locally adapts the surrogate model specifically for the parameters that are depicted during the outer optimization loop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables

We introduce a technique for the dimension reduction of a class of PDE constrained optimization problems governed by linear time dependent advection diffusion equations for which the optimization variables are related to spatially localized quantities. Our approach uses domain decomposition applied to the optimality system to isolate the subsystem that explicitly depends on the optimization var...

متن کامل

Progressive construction of a parametric reduced-order model for PDE-constrained optimization

An adaptive approach to using reduced-order models as surrogates in PDE-constrained optimization is introduced that breaks the traditional offline-online framework of model order reduction. A sequence of optimization problems constrained by a given Reduced-Order Model (ROM) is defined with the goal of converging to the solution of a given PDE-constrained optimization problem. For each reduced o...

متن کامل

Designing a novel structure of explicit model predictive control with application in a buck converter system

This paper proposes a novel structure of model predictive control algorithm for piecewise affine systems as a particular class of hybrid systems. Due to the time consuming and computational complexity of online optimization problem in MPC algorithm, the explicit form of MPC which is called Explicit MPC (EMPC) is applied in order to control of buck converter. Since the EMPC solves the optimizati...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Project Scheduling with Simultaneous Optimization, Time, Net Present Value, and Project Flexibility for Multimode Activities with Constrained Renewable Resources

Project success is assessed based on various criteria, every one of which enjoys a different level of importance for the beneficiaries and decision makers. Time and cost are the most important objectives and criteria for the project success. On the other hand, reducing the risk of finishing activities until the predetermined deadlines should be taken into account. Having formulated the problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018